The Algebra Distributive Property – A Simple Introduction

Logic, Mathematics
The algebra distributive property lets you multiply a sum by multiplying each part separately and then adding those amounts together. These words are bound to confuse the reader, so let’s consider an example that will demonstrate what we mean. The Example We want to multiply 4x7. Let’s write it as (4)(7). Then, (4)(7) = 28 Now let’s replace 4 with its equivalent, 3+1. And let’s replace 7 with its equivalent, 5+2. Then, (3+1)(5+2) = 28 This seems to be a pretty strange way to write 4x7, doesn’t it? Yet in mathematics – in algebra-style notation – it is just as correct as 4x7. In this form, we can hopefully explain in an understandable way, how the algebra distributive property works. Refer to the diagram to see how we can do…
Read More

Mathematical Powers – a Simple Insight

Education, Mathematics
[caption id="attachment_14363" align="alignright" width="380"] Squaring - the Power of 2[/caption] Multiplication is one of the simpler operations we perform on numbers. As kids we had to learn the multiplication tables, one times two equals two, two times two equals three, three times two equals six, and so forth. It didn’t take long before most of us were comfortable multiplying simple numbers. But sometimes we multiply the same number times itself. In that case, we can write out the multiplication in the usual way, or we can write it in terms of mathematical powers. Mathematical Powers – a Simple Illustration Let’s consider the example of three times three. That can be written either 3 x 3 = 9, or in powers notation, 32 = 9 This tells us three to the…
Read More

More High School Math

Mathematics
[caption id="attachment_5627" align="alignright" width="400"] Calculations[/caption] The most practical math for people to understand is undoubtedly high school math, rather than college math. After all, how much calculus is used when you go grocery shopping, get your plumbing fixed, or you go skiing on the weekend? High School Math You've got to love it. Here's the first high school math problem. Problem 1: Simplify the mathematical expression: (x-2y3)4 (x-3y4)-2 Simplifying the first parenthetical expression, we get (x-8y12) It is the powers we multiply when powers are raised to powers. Doing similarly with the second parenthetical expression, we get for that (x6y-8) The equation now reads, (x-8y12) (x6y-8) When we multiply numbers, we add and subtract powers. This gives, (x-2y4) [Answer] ------------------------- Problem 2: 2/10 divided by n equals 3-1/2. What does…
Read More